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A Versatile Synthesis of B-Amino Acids Using the Nicholas 
Reaction. II. Formal Total Synthesis of Thienamycin. 

Peter A. Jacobi* and Wan&n Zbeng 

Abxbtut: lhnochiral acetyienic acid 26. prepared using the Schreibcr nmd#ication of the Nicholas 
mution. has been converted to&awdno acid derivative 28 by a two step sqtmce involving Curdus 
~~~fdlowcdby~cl~e(9t~rrccrylcnicbond. hinoacidd&i~Z8wasthea 
converted to thienamycin (12) precursor 30 by cyclization with DCC followed by epimkrimion. 

In the pmceeding paper in this series we xeported that Nicholas adducts of general 8truchu-e 3 serve as 
convenient precursors to g-amino acid derivative8 of type 6.1 via a three step sequence consisting of (1) imide 
hydrolysis with concomitant TMS group xemoval, & (2) CllrtiUS rCrWan~mtnt ofthe resulting carboaylic acids 
4 to affo~! ferr-butylcarbamates 5;s and (3) oxidative cleavage of the acetylenic triple bond (Scheme 1).4.% 
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Deprotection of 6 (‘DA) followed by cyclization (DCC) then pmvided an efficknt route to &lactams 7.s In 
identical fashion, Nicholas adducts em-3 were cleanly converted to the enantimeric Elactams ent-7 with 
virtually 100% stereosekctivity (ent = mirror image of parent mucture ahown). Yields throughout this 
sequence were generally high, except for the sterically hi&ted example 3b(A) (R’= Me, Ch = A).1 
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In each case the Nicholas reaction of cbiral enolates lA,B took place with >98:2 syn-selectivity (Cs-Q. 
carbapcncm numbcring),l and for gchkal substrates 2a,b, with a swhcmical outamc in accmhm with the 
kinetic twolution model pqoscd by Schmiber et al. (see also Scheme 1. pmc&ing paper).6 These msults am 
summari~ in Table 1, (upper cam Iettcq&r to auxikks Ch; lower cam letters refer to substitucms a-c). In 

Table 1 

1. lA+2a -> t%(A) : 
3. lA+2b -> Sb(A) : 

2. lB+2a->efwa(B) 

5. lA+PD-_, al(A) : 
4. lB+2b-wmMb(B) 

7. lC+2c -> SC(C) : 
6. lB+ef#-2G->ent3c(B) 
8. 1c + mm-e enrac(c) 

addition to achii substrates 2n,b (entries l-3), chiral substrates 2c (8s) and ent-2c (8R) reacted in a 
‘matched” fashion with chir& enolates 1A and lB, mspcctivcly. providing adducts WA) and entdc(B) with 
virtually 100% stereocontrol (entries 5.6). Interestingly, 2c and enr-2c also reacted with e cnolate 1C to 
provide homochiral adducts 3c(C) and enr&(C) with >98% stcmos&ctivity (entries 7.8). The sttuctum of 
3c(C) was confkmcd by hydrolysis to the identical carboxylic acid 4c derived from 3c(A). whose strucmm 
was established by X-ray analysk7a This last result serves to illustrate the powerful dimcting influence which 
chiral substituents can exert an the Nicholas tea&n. 

BLactams 5 (R’= IQ a@ 7b f.R’=, Me) have a substitution pattcm which is chuactairtic of the important 
antibiotics PS-5 (10) and PS-6 (11). respectively (5R,6&stcreochemistry),~ and 7c (R’= O&t) is directly 
related to olivanic acids of the type exemplified by MM-22381 (9) (5R,6.!I,8&stcmochemistry) (Scheme 2).5 

S(R-OH;Z=H); lO(R=H;Z-Ac); II (A-&zmAe) 12(Z-H); lS(Z-CH-NH) 

Scheme 2 

Onthehasis~foftheselasule,itoeempdliLelythattheNicholar-SchtaibermathodologymiObtbe~~tothe 
preparation of analogs having the 5R,6Q&configuration found in thicnamycin (12) and imipenem (13).15 In 
principle, this substitution pat&m was available by ‘his-matched” condensation of chid enolatc 1A with cobalt 
complex en& (Schem 2), which would affotd adduct 14A if transition state interactions were domktal by 
chiral auxiliary A (& Scheme 1). However, all attempts in this direction provided only complex mixtures of 
pmducts, which contained at least three isomer& adducts in a ratio of -7:3:1 (29% combined yield). 

In contrast to the case with lA, chiral enolatc 1D underwent clean condensation with ent-2c to provide a 
12.&l mixture of two isomcric acetylenic acid derivatives. These were subsequently identified as syn-adduct 
14D and anti-isomer HID (Scheme 3, following page). Interestingly, however, the major isomer proved to be 
the undesired 1SD. Thus~ HID was cfetinly converted to the caiboxylic acid 16,a which upon Curtius 
rearrangement,3 followed by oxidative cleavage,4 afforded amino acid derivative 18 in exact analogy to our 
earlier studies with 6 (c$ Scheme 1). Up to this point it was impossible to distinguish between syn- and anti- 
ikmkrs on the basis of spcctmldata alone. However, upon cyclixation of I% to I9 &c cis-rklationship between 
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Hs-Hg was immdiately apparent from their relatively large coupring constaat (Js6 = 6.0 Hz), which far aans- 
8-lrtams is typically Q Hz.8 The question of absolute stereochemistry at C5-Q was then msolved by 
@mwizationstudies(sacbott). Asex$ccted,l9waseadilycpine&dtotheduitedtmns-iromtr#)(J~~= 
1.8 Hz)? which pmvcd b be ikntical to the material obtained directly fxcm syn-adduct 14D. As ifdim@ if 
19 had been of opposite absolute configuration at Cs-Q (i.e. 22). epimerization would have affoxdcd the 
known &lactam enr-7c (& scheme 1). 

1D 14D (6%) 1SD (75%) 

16 ww 17 (81%) 19 (99%) 19 (6w 

1.8~2807% I-Pr#Et; DAN. 2. UDDH. 3. DPPA. t-&OH (Durtiua). 4.08OflalO4. 5. TFA; DCC. 6. TMSN, NE@ &O+ 

scheme 3 

Finally, these observations wem readily extended to a formal total synthesis of thicnamycin (12),5 
although not without an unexpected diversion. Thus, condensation of chiml enolate 23 with enr-k pmvided a 
79% yioh~ of the NkhoIas adduct 24.6 which was obtained with -17:1 anti-sekztivity (scheme 4, fo&nving 
page). Intuestingly. howevrz; hydrolysis of 24 under the usual conditi~s (LiOOI& 3:l THF&O) afforded a 
complex mixture of product&~ from which en&-ring opened product 25 could be isolated in 30% yield. No 
traccoftbed&edproduct26dcrivedfkomex0-nu&ophWattackcouldbcdctectcd. ThisuncxpeMmaction 
pathway might be due to complexation of Li cation between the uo-carbonyl functionality and the -0I’BDPS 
gmup (r$ I, below), since the dated n-propyl derivative (OTBDPS =,Ma) underwent lKxmal hydrolysis.~ In 

I 

any event, addition of DMF to the hydrolysis reaction completely mverscd the regioselcctivity (3:3:1 
DMF/THF/H~O), and afforded a 74% yield of the desired acetylenic acid 26.m As dctibed above for 16 
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(Scheme 3). 26 wad then convcrted in two 2tep (7196.71%) to-the hsmochkl amtoO acid dwivative 28, 
which upon dcqrotcuioll md cycli2atim with Dee 2ffordedthc ci2-b_ 29 (56%. Ilqbimd). Finauy, 
epimsiPdaaof29~gto~eprockdureofNalraietrJ.~tbehrowathiGnnmyein(12)~ 
3o~~whichbadidtnticalspectrpldataaslhat~~byoritcoefal.farthalacemic tnat&al(66%yield, 
viscous pale yellow oil, @so e -1.9“ [c = 6.3, QJgCl#b~*‘o 

:: 

3. 
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